9 research outputs found

    The diffuse Nitsche method: Dirichlet constraints on phase-field boundaries

    Get PDF
    We explore diffuse formulations of Nitsche's method for consistently imposing Dirichlet boundary conditions on phase-field approximations of sharp domains. Leveraging the properties of the phase-field gradient, we derive the variational formulation of the diffuse Nitsche method by transferring all integrals associated with the Dirichlet boundary from a geometrically sharp surface format in the standard Nitsche method to a geometrically diffuse volumetric format. We also derive conditions for the stability of the discrete system and formulate a diffuse local eigenvalue problem, from which the stabilization parameter can be estimated automatically in each element. We advertise metastable phase-field solutions of the Allen-Cahn problem for transferring complex imaging data into diffuse geometric models. In particular, we discuss the use of mixed meshes, that is, an adaptively refined mesh for the phase-field in the diffuse boundary region and a uniform mesh for the representation of the physics-based solution fields. We illustrate accuracy and convergence properties of the diffuse Nitsche method and demonstrate its advantages over diffuse penalty-type methods. In the context of imaging based analysis, we show that the diffuse Nitsche method achieves the same accuracy as the standard Nitsche method with sharp surfaces, if the inherent length scales, i.e., the interface width of the phase-field, the voxel spacing and the mesh size, are properly related. We demonstrate the flexibility of the new method by analyzing stresses in a human vertebral body

    A DEIM driven reduced basis method for the diffuse Stokes/Darcy model coupled at parametric phase-field interfaces

    Get PDF
    In this article, we develop a reduced basis method for efficiently solving the coupled Stokes/Darcy equations with parametric internal geometry. To accommodate possible changes in topology, we define the Stokes and Darcy domains implicitly via a phase-field indicator function. In our reduced order model, we approximate the parameter-dependent phase-field function with a discrete empirical interpolation method (DEIM) that enables affine decomposition of the associated linear and bilinear forms. In addition, we introduce a modification of DEIM that leads to non-negativity preserving approximations, thus guaranteeing positive-semidefiniteness of the system matrix. We also present a strategy for determining the required number of DEIM modes for a given number of reduced basis functions. We couple reduced basis functions on neighboring patches to enable the efficient simulation of large-scale problems that consist of repetitive subdomains. We apply our reduced basis framework to efficiently solve the inverse problem of characterizing the subsurface damage state of a complete in-situ leach mining site. © 2022, The Author(s)

    A DEIM driven reduced basis method for the diffuse Stokes/Darcy model coupled at parametric phase-field interfaces

    Get PDF
    In this article, we develop a reduced basis method for efficiently solving the coupled Stokes/Darcy equations with parametric internal geometry. To accommodate possible changes in topology, we define the Stokes and Darcy domains implicitly via a phase-field indicator function. In our reduced order model, we approximate the parameter-dependent phase-field function with a discrete empirical interpolation method (DEIM) that enables affine decomposition of the associated linear and bilinear forms. In addition, we introduce a modification of DEIM that leads to non-negativity preserving approximations, thus guaranteeing positive-semidefiniteness of the system matrix. We also present a strategy for determining the required number of DEIM modes for a given number of reduced basis functions. We couple reduced basis functions on neighboring patches to enable the efficient simulation of large-scale problems that consist of repetitive subdomains. We apply our reduced basis framework to efficiently solve the inverse problem of characterizing the subsurface damage state of a complete in-situ leach mining site. © 2022, The Author(s)

    Variationally consistent mass scaling for explicit time-integration schemes of lower- and higher-order finite element methods

    No full text
    In this paper, we propose a variationally consistent technique for decreasing the maximum eigenfrequencies of structural dynamics related finite element formulations. Our approach is based on adding a symmetric positive-definite term to the consistent mass matrix that follows from the integral of the traction jump across element boundaries. The added term is weighted by a small factor, for which we derive a suitable, and simple, element-local parameter choice. We perform numerical experiments for the linear wave equation in one and two dimensions, for quadrilateral elements and triangular elements, and for up to fourth order polynomial basis functions. Despite the increase in critical time-step size, we do not observe adverse effects in terms of spatial accuracy and orders of convergence. To extend the method to non-linear problems, we introduce a linear approximation. Our three-dimensional experiments with tetrahedral and hexahedral elements show that a sizeable increase in critical time-step size can be achieved while only causing minor (even beneficial) influences on the dynamic response.</p

    A variational approach based on perturbed eigenvalue analysis for improving spectral properties of isogeometric multipatch discretizations

    No full text
    A key advantage of isogeometric discretizations is their accurate and well-behaved eigenfrequencies and eigenmodes. For degree two and higher, however, optical branches of spurious outlier frequencies and modes may appear due to boundaries or reduced continuity at patch interfaces. In this paper, we introduce a variational approach based on perturbed eigenvalue analysis that eliminates outlier frequencies without negatively affecting the accuracy in the remainder of the spectrum and modes. We then propose a pragmatic iterative procedure that estimates the perturbation parameters in such a way that the outlier frequencies are effectively reduced. We demonstrate that our approach allows for a much larger critical time-step size in explicit dynamics calculations. In addition, we show that the critical time-step size obtained with the proposed approach does not depend on the polynomial degree of spline basis functions.</p

    A discontinuous Galerkin residual-based variational multiscale method for modeling subgrid-scale behavior of the viscous Burgers equation

    No full text
    We initiate the study of the discontinuous Galerkin residual-based variational multiscale (DG-RVMS) method for incorporating subgrid-scale behavior into the finite element solution of hyperbolic problems. We use the one-dimensional viscous Burgers equation as a model problem, as its energy dissipation mechanism is analogous to that of turbulent flows. We first develop the DG-RVMS formulation for a general class of nonlinear hyperbolic problems with a diffusion term, based on the decomposition of the true solution into discontinuous coarse-scale and fine-scale components. In contrast to existing continuous variational multiscale methods, the DG-RVMS formulation leads to additional fine-scale element interface terms. For the Burgers equation, we devise suitable models for all fine-scale terms that do not use ad hoc devices such as eddy viscosities but instead directly follow from the nature of the fine-scale solution. In comparison to single-scale discontinuous Galerkin methods, the resulting DG-RVMS formulation significantly reduces the energy error of the Burgers solution, demonstrating its ability to incorporate subgrid-scale behavior in the discrete coarse-scale system.Green Open Access added to TU Delft Institutional Repository ‘You share, we take care!’ – Taverne project https://www.openaccess.nl/en/you-share-we-take-care Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.Aerospace Structures & Computational MechanicsAerodynamic

    Residual-based variational multiscale modeling in a discontinuous Galerkin framework

    No full text
    We develop the general form of the variational multiscale method in a discontinuous Galerkin framework. Our method is based on the decomposition of the true solution into discontinuous coarse-scale and discontinuous fine-scale parts. The obtained coarse-scale weak formulation includes two types of fine-scale contributions. The first type corresponds to a fine-scale volumetric term, which we formulate in terms of a residual-based model that also takes into account fine-scale effects at element interfaces. The second type consists of independent fine-scale terms at element interfaces, which we formulate in terms of a new fine-scale "interface model." We demonstrate for the one-dimensional Poisson problem that existing discontinuous Galerkin formulations, such as the interior penalty method, can be rederived by choosing particular fine-scale interface models. The multiscale formulation thus opens the door for a new perspective on discontinuous Galerkin methods and their numerical properties. This is demonstrated for the one-dimensional advection-diffusion problem, where we show that upwind numerical fluxes can be interpreted as an ad hoc remedy for missing volumetric fine-scale terms.Green Open Access added to TU Delft Institutional Repository ‘You share, we take care!’ – Taverne project https://www.openaccess.nl/en/you-share-we-take-care Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.Aerospace Structures & Computational MechanicsAerodynamic

    Stabilized immersed isogeometric analysis for the Navier–Stokes–Cahn–Hilliard equations, with applications to binary-fluid flow through porous media

    No full text
    Binary-fluid flows can be modeled using the Navier–Stokes–Cahn–Hilliard equations, which represent the boundary between the fluid constituents by a diffuse interface. The diffuse-interface model allows for complex geometries and topological changes of the binary-fluid interface. In this work, we propose an immersed isogeometric analysis framework to solve the Navier–Stokes–Cahn–Hilliard equations on domains with geometrically complex external binary-fluid boundaries. The use of optimal-regularity B-splines results in a computationally efficient higher-order method. The key features of the proposed framework are a generalized Navier-slip boundary condition for the tangential velocity components, Nitsche's method for the convective impermeability boundary condition, and skeleton- and ghost-penalties to guarantee stability. A binary-fluid Taylor–Couette flow is considered for benchmarking. Porous medium simulations demonstrate the ability of the immersed isogeometric analysis framework to model complex binary-fluid flow phenomena such as break-up and coalescence in complex geometries.</p

    Nitsche's method as a variational multiscale formulation and a resulting boundary layer fine-scale model

    No full text
    We show that in the variational multiscale framework, the weak enforcement of essential boundary conditions via Nitsche's method corresponds directly to a particular choice of projection operator. The consistency, symmetry and penalty terms of Nitsche's method all originate from the fine-scale closure dictated by the corresponding scale decomposition. As a result of this formalism, we are able to determine the exact fine-scale contributions in Nitsche-type formulations. In the context of the advection–diffusion equation, we develop a residual-based model that incorporates the non-vanishing fine scales at the Dirichlet boundaries. This results in an additional boundary term with a new model parameter. We then propose a parameter estimation strategy for all parameters involved that is also consistent for higher-order basis functions. We illustrate with numerical experiments that our new augmented model mitigates the overly diffusive behavior that the classical residual-based fine-scale model exhibits in boundary layers at boundaries with weakly enforced essential conditions.Accepted Author ManuscriptShip Hydromechanics and Structure
    corecore